Landscape-scale parameterization of a tree-levelforest growth model: a k-nearest neighborimputation approach incorporating LiDAR data
نویسندگان
چکیده
Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and species) across a 12 100 ha study area in northeastern Oregon, USA. The primary objective was to provide spatially explicit data to parameterize the Forest Vegetation Simulator, a tree-level forest growth model. The final imputation model utilized LiDAR-derived height measurements and topographic variables to spatially predict tree-level forest inventory data. When compared with an independent data set, the accuracy of forest inventory metrics was high; the root mean square difference of imputed basal area and stem volume estimates were 5 m2 ha–1 and 16 m3 ha–1, respectively. However, the error of imputed forest inventory metrics incorporating small trees (e.g., quadratic mean diameter, tree density) was considerably higher. Forest Vegetation Simulator growth projections based upon imputed forest inventory data follow trends similar to growth projections based upon independent inventory data. This study represents a significant improvement in our capabilities to predict detailed, tree-level forest inventory data across large areas, which could ultimately lead to more informed forest management practices and policies. Résumé : L’aménagement durable des forêts requiert des données appropriées et détaillées d’inventaire forestier sur de grandes superficies, ce qui est difficile à obtenir par le biais de techniques traditionnelles d’inventaire forestier. Cette étude évalue des modèles d’imputation basés sur les k plus proches voisins incorporant des données lidar pour prédire des mesures d’inventaire à l’échelle de l’arbre (hauteur, diamètre à hauteur de poitrine et espèce des arbres individuels) dans une aire d’étude de 12 100 ha du nord-est de l’Oregon, aux États-Unis. L’objectif premier est de fournir des données spatialement explicites pour paramétrer un modèle de croissance forestière à l’échelle de l’arbre, le «Forest Vegetation Simulator». Le modèle final d’imputation utilise des mesures de hauteur et des variables topographiques dérivées du lidar pour prédire spatialement des données d’inventaire forestier à l’échelle de l’arbre. Lorsqu’elles ont été comparées à un fichier indépendant de données, la précision des mesures d’inventaire forestier était élevée: l’erreur quadratique moyenne des estimations imputées de surface terrière et de volume étaient respectivement de 5 m2 ha–1 et 16 m3 ha–1. Cependant, l’erreur des mesures imputées d’inventaire forestier qui tiennent compte des petits arbres (p. ex. le diamètre moyen quadratique et la densité des arbres) était considérablement plus élevée. Les projections de croissance du «Forest Vegetation Simulator» basées sur des données imputées d’inventaire forestier suivent une tendance similaire aux projections basées sur des données indépendantes d’inventaire. Cette étude représente une amélioration importante de nos capacités à prédire des données détaillées d’inventaire forestier à l’échelle de l’arbre sur de grandes superficies, ce qui pourrait éventuellement mener à des pratiques et des politiques d’aménagement forestier mieux fondées. [Traduit par la Rédaction]
منابع مشابه
Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملMapping Net Stocked Plantation Area for Small-Scale Forests in New Zealand Using Integrated RapidEye and LiDAR Sensors
In New Zealand, approximately 70% of plantation forests are large-scale (over 1000 ha) with accurate resource description. In contrast, the remaining 30% of plantation forests are small-scale (less than 1000 ha). It is forecasted that these small-scale forests will supply nearly 40% of the national wood production in the next decade. However, in-depth description of these forests, especially th...
متن کاملSmall-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A f...
متن کاملSpatial pattern of forest resources in a multifunctional landscape
Forests are usually assessed as a discrete land cover type. However, we hypothesise that the resources associated with forests show diverse spatial patterns, only partially matching current forest boundaries. Therefore tree vegetation parameters related to relevant forest resources at the landscape level were assessed for the Canton of Geneva in western Switzerland. LIDAR based digital terrain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013